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A B S T R A C T   

Research in computational psychiatry is dominated by models of behavior. Subjective experience during 
behavioral tasks is not well understood, even though it should be relevant to understanding the symptoms of 
psychiatric disorders. Here, we bridge this gap and review recent progress in computational models for subjective 
feelings. For example, happiness reflects not how well people are doing, but whether they are doing better than 
expected. This dependence on recent reward prediction errors is intact in major depression, although depressive 
symptoms lower happiness during tasks. Uncertainty predicts subjective feelings of stress in volatile environ
ments. Social prediction errors influence feelings of self-worth more in individuals with low self-esteem despite a 
reduced willingness to change beliefs due to social feedback. Measuring affective state during behavioral tasks 
provides a tool for understanding psychiatric symptoms that can be dissociable from behavior. When smartphone 
tasks are collected longitudinally, subjective feelings provide a potential means to bridge the gap between lab- 
based behavioral tasks and real-life behavior, emotion, and psychiatric symptoms.   

1. Introduction on psychiatric symptoms and subjective feelings 

Research on psychiatric disorders is complicated by the complexity 
and heterogeneity of psychiatric symptoms. For example, following the 
current symptom-based diagnostic system, researchers observe sub
stantial heterogeneity among individuals diagnosed with mood disor
ders (Gillan and Rutledge, 2021; Hitchcock et al., 2022; Huys et al., 
2016; Yip et al., 2022). One of the most widely used diagnostic tools, the 
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (Amer
ican Psychiatric Association, 2013), allows for at least 256 symptom 
phenotypes that can be diagnosed as major depressive disorder (MDD). 
This heterogeneity is thought to be related to variation in symptom 
trajectory and treatment responses (Buch and Liston, 2021; Drysdale 
et al., 2017; Fried and Nesse, 2015). 

Researchers in the emerging field of computational psychiatry sug
gest that psychiatric disorders result from aberrant computations that 
lead to variation in decision making (Huys et al., 2016; Montague et al., 
2012). For example, anxiety is associated with increased risk aversion 
but not loss aversion (Charpentier et al., 2017) and these distinct effects 
on risky decision making are captured in the Prospect Theory model 
(Kahneman and Tversky, 1979). Individuals with high 

compulsion-related symptoms exhibit lower goal-directed control dur
ing learning in a two-step task with fixed probabilities of state transi
tions (Brown et al., 2020; Gillan et al., 2016; Patzelt et al., 2019). 
Furthermore, chronic worry is associated with greater perseveration on 
punishment avoidance goals in a learning environment where the 
probability of state transitions changes (Sharp et al., 2022). Social tasks 
can also lead to selective effects, with higher depression associated with 
lower learning rates only for choices from a virtual partner but not from 
choices made by participants (Safra et al., 2019). 

In contrast to a vast literature on cognitive models evaluated in 
relation to mental health, there have been few studies using computa
tional models to quantify affective dynamics during tasks. Given that 
psychiatric disorders often feature aberrant mood dynamics, a better 
understanding of those disorders may arise from a more precise under
standing of how affective dynamics change in well-controlled task en
vironments. We can then ask how affective dynamics during tasks relate 
to and provide insight into the origin of affective dynamics outside of the 
lab as well as variation in psychiatric symptoms. Furthermore, do af
fective dynamics explain unique variance in symptoms beyond what is 
explained by behavior in the same tasks? Addressing these questions 
requires adopting paradigms that sequentially sample affective states 
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during decision-making tasks. 
In this review, we argue that measuring and modeling momentary 

subjective feelings during decision-making tasks can help to elucidate 
the affective processes influenced by psychiatric disorders. We will 
discuss findings from studies of both emotion and mood to describe the 
benefits of measuring subjective feelings to address a variety of ques
tions. One way to distinguish affective states and moods from emotions 
is that affective states can depend on multiple independent events, and 
any associated stimuli may no longer be present. In contrast, emotions 
can be thought of as primarily responses to a specific event. Both emo
tions and affective states lead to subjective feelings and can be studied 
with questions of a subjective nature. When studying affective states, 
these questions should not make reference to any specific events or 
clearly be about a specific event. This distinction is consistent with 
recent proposed theoretical framework for emotions and moods (Eldar 
et al., 2021). For obvious reasons, mood dynamics may be particularly 
relevant to our growing understanding of mood disorders. Computa
tional models that explain behavior in decision-making tasks provides a 
useful starting point for understanding affective dynamics, because the 
same variables that influence behavior should also be relevant to affect. 
For example, the prediction errors that quantify the difference between 
received and expected outcomes in reinforcement learning models can 
also account for momentary mood dynamics in reinforcement learning 
tasks (Blain and Rutledge, 2020). 

Modeling momentary subjective feelings can improve our under
standing of affective processes because computational models can 
quantify the simultaneous influence of multiple factors on affective 
dynamics. For example, happiness in a social context can depend on 
outcomes that happen to another person (Rutledge et al., 2016). The 
extent to which advantageous and disadvantageous inequality impact 
happiness predicts social preferences. These types of inequality have 
been linked to the social emotions of guilt and envy, respectively. Par
ticipants may be reluctant to honestly report on how much envy they are 
currently feeling when asked directly. Computational modeling of af
fective dynamics allows affective impacts of inequality to be quantified 
in a way that avoids potentially sensitive questions. Some individuals 
may misrepresent how they emotionally respond to aspects of a task. 
Tasks with many emotionally relevant events preceding each affective 
rating may be particularly well suited for obscuring the subject of study. 
Further studies can delineate under which circumstances and for which 
populations tasks with affective state ratings have advantages over 
simpler tasks. In more naturalistic tasks, computational modelling may 
be particularly useful for quantifying latent affective and cognitive 
dynamics. 

Mood is not only a product of the computations that underlie deci
sion making but can be dissociable from behavior and also have a 
different relationship to psychiatric symptoms. During reinforcement 
learning, learning-irrelevant potential rewards can influence participant 
choices, but not influence momentary happiness (Blain and Rutledge, 
2020). In a social context, social prediction errors that are the difference 
between expected and observed social feedback can lead to dissociable 
impacts on feelings of self-worth and the predictions that participants 
make about future social feedback (Will et al., 2020). Distinct cognitive 
and affective mechanisms can show impairments in psychiatric disor
ders. People with depression showed lower general mood during a 
risk-taking task while there was no difference in the influence of reward 
prediction errors on their mood ratings (Rutledge et al., 2017). In an 
ultimatum game, two people split a certain amount of money, with one 
person proposing how to split and the other person accepting or 
rejecting the offered amount. Both depressed and non-depressed in
dividuals tended to reject offers when the experienced offers were worse 
than expected. Non-depressed individuals tended to reject offers after 
emotional prediction errors (e.g., the experienced emotion was more 
negative than expected) whereas this influence of emotional prediction 
errors is reduced in depressed individuals (Heffner et al., 2021). 

If affect is to play an adaptive role in behavior, affective state should 

interact with decision making. This also implies that assessing affective 
dynamics could capture unexplained variance in behavior in any task 
where affective state varies. In an ultimatum game, emotional predic
tion errors predicted participants’ rejections of unfair offers (Heffner 
et al., 2021). A recent proposal also argues that mood represents the 
momentum of rewards in an environment (Bennett et al., 2022; Blain 
and Rutledge, 2020; Eldar et al., 2016; Eldar and Niv, 2015). The mo
mentum of rewards reflects the moving average of recent prediction 
errors, a measure that relates to whether an environment is getting 
better or worse. In the proposal, a positive mood could then influence 
behavior by increasing the perceived value of rewards, thereby 
increasing value updates after unexpected rewards and exploiting actual 
momentum in the environment if it exists (Eldar et al., 2016, 2021). 
However, this could have unintended consequences and increase risk 
taking in other domains. After surprising positive events due to sporting 
events or pleasant weather, increased mood is associated with purchase 
of lottery tickets (Otto and Eichstaedt, 2018). In mood disorders char
acterized with high mood instability such as bipolar disorder, mood 
could distort reward perception in a way that leads to extreme value 
estimates and behavior (Eldar and Niv, 2015; Mason et al., 2017). Thus, 
measuring mood dynamics during cognitive tasks could clarify the latent 
mechanisms that underlie aberrant choice behavior. 

Sequential sampling of subjective mood ratings can be conveniently 
implemented both in the lab and in tasks implemented on mobile de
vices such as smartphones or tablets. Moving toward large-scale and 
longitudinal data collection through online platforms and smartphone 
devices can resolve shortcomings from cross-sectional clinical datasets 
collected at a single time point in a controlled lab environment (Gillan 
and Rutledge, 2021; Hitchcock et al., 2022). High accessibility facilitates 
dense sampling of momentary subjective feelings during behavioral 
tasks, and it allows researchers to conduct longitudinal studies that 
probe both cognitive and affective processing in psychiatric disorders 
with low financial and patient burden (Gillan and Rutledge, 2021; 
Harari et al., 2016). In addition, smartphones are useful for ecological 
momentary assessment, and can measure affect in the same participant 
in different real-life contexts (Killingsworth and Gilbert, 2010; MacK
erron and Mourato, 2013). 

In this review, we discuss how the dynamics of subjective experience 
during tasks have been assessed through momentary ratings of subjec
tive feelings and utilized in computational psychiatry research. We also 
show how computational modeling of affective dynamics during tasks 
has contributed to a better understanding of emotions in psychiatric 
disorders. We specifically focus on three widely used decision-making 
contexts: risky decision making (Section 2), reinforcement learning 
(Section 3), and decision making in social contexts (Section 4). We 
suggest potential implications of subjective mood modeling for dis
secting heterogeneous symptoms of psychiatric disorders like major 
depression (Section 5). We describe how smartphones can be utilized to 
improve research in computational psychiatry that bridges between 
behavioral models and subjective experience as it relates to both real- 
world emotions and psychiatric symptoms (Section 6). Lastly, we sug
gest guidelines for developing computational models of subjective 
feelings and propose some future directions for this growing field 
(Section 7). 

2. Computational models of subjective feelings: risky decision 
making 

2.1. Risky decision making 

Decision making under risk or uncertainty was initially thought to be 
primarily about maximization of expected values (Bernoulli, 1954; Von 
Neumann and Morgenstern, 1944). More recently, emotion research has 
inspired more realistic economic theories including in the field of 
behavioral economics. Prospect theory is a widely used model for eco
nomic decision making under risk, inspired by ideas about anticipated 
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emotions and the role they might play in subjective risk preferences 
(Kahneman and Tversky, 1979). This theory formally describes risky 
decision making and focuses in particular on two phenomena: the 
diminishing subjective utility of increasing outcome magnitudes that 
explains risk aversion in gains and risk seeking in losses, and the ten
dency to weigh potential losses more heavily than potential gains, which 
is referred to as loss aversion (Kahneman and Tversky, 1979; 
Sokol-Hessner and Rutledge, 2019). By expressing the concepts that 
comprise decision making under risk in mathematical form, psycholo
gists have been able to test hypotheses about how these components may 
differ between individuals and could relate to brain function or mood 
(De Martino et al., 2010; Tom et al., 2007). Recently, researchers have 
increasingly considered a potential relationship between feelings and 
choice, motivated by theories like the “risk-as-feelings” hypothesis 
(Loewenstein et al., 2001; Loewenstein and Lerner, 2003) and consistent 
with research linking risky choice to subjective feelings (Charpentier 
et al., 2016). 

2.2. Mood depends on reward prediction errors 

While it seems intuitive that happiness is influenced by reward, and 
increased wealth should lead to improved mood, empirical evidence 
suggests that reward alone does not capture the full picture and that the 
relationship between wealth and happiness is not a simple one (Easterlin 
et al., 2010; Kahneman et al., 2006; Kahneman and Deaton, 2010). The 
emotional response to a gamble’s outcome depends on the value of the 
obtained outcome and also its likelihood (Mellers et al., 1997). For 
example, it feels better to win $50 when the odds are 10% compared to 
when the odds are 90%. Using computational modeling, researchers 
have formalized a model for happiness incorporating a role for expec
tations (Rutledge et al., 2014). Happiness is suggested to be a 
recency-weighted average of chosen certain rewards (CR), the expected 
values of chosen gambles (EV), and reward prediction errors (RPE), the 
difference between the received reward and the expected value of 
chosen gambles (Eq. 1) (Rutledge et al., 2015; Rutledge et al., 2014). In 
addition, a baseline mood parameter (w0) captures overall mood during 
the task after accounting for the mood fluctuations that can be attributed 
to task events. Thus, it may reflect overall how a participant experiences 
a task and could differ between tasks for an individual. Researchers 
found that, despite no immediate impact on current wealth, expecta
tions about the future influence happiness, but prediction errors have an 
even stronger impact (Fig. 1A). These results were replicated by an in
dependent group in a pre-registered study (Vanhasbroeck et al., 2021). 

Happinesst = w0 +w1

∑t

j=1
γt− jCRj +w2

∑t

j=1
γt− jEVj +w3

∑t

j=1
γt− jRPEj (1) 

Computational modeling allows researchers to quantify the different 
factors that influence happiness and helps to bridge the gap between 

subjective emotional experience and the neurophysiology of affective 
processing during risky decision making. Using functional magnetic 
resonance imaging (fMRI), blood oxygen level dependent (BOLD) ac
tivity in the ventral striatum preceding happiness ratings was found to 
correlate with later self-reported happiness ratings (Fig. 1B) (Rutledge 
et al., 2014). Furthermore, activity in the ventral striatum also corre
lated with the magnitude of certain rewards, expected values, and 
reward prediction errors that all influence momentary happiness. Neu
rons that release dopamine show activity patterns that resemble these 
reward prediction errors (Schultz et al., 1997) and this is consistent with 
BOLD responses in the ventral striatum thought to be due to dopami
nergic input (Caplin et al., 2010). Moreover, right anterior insula ac
tivity at the time when participants were asked to rate their current 
happiness was positively correlated with happiness ratings (Rutledge 
et al., 2014), consistent with evidence that this area supports intero
ceptive awareness (Critchley et al., 2004; Damasio, 1999). 

Examining the relationship between happiness and risk taking can 
inform our understanding of how mood disorders influence affective 
experiences and behavior in a context that is well understood from a 
psychological and neurobiological perspective. While depressive 
symptom severity negatively correlates with overall happiness during 
risk-taking tasks, the neural and emotional impact of reward prediction 
errors is intact in major depression (Rutledge et al., 2017). This result 
suggests that the aberrant processing of reward prediction errors during 
reinforcement learning tasks in previous studies may reflect more 
downstream impairments in behavior or cognitive appraisal (Kumar 
et al., 2018). Clinical anxiety is linked to increased risk aversion (Maner 
et al., 2007), but not loss aversion (Charpentier et al., 2017), although it 
is less clear whether risk taking is influenced by depression (Chung et al., 
2017). Affective experience has only been evaluated in a small number 
of risk-taking paradigms but modeling the dynamics of subjective feel
ings like happiness first in these well-understood decision paradigms 
will be a key step in understanding how these dynamics become 
dysfunctional in psychopathology. 

2.3. Mood is influenced by counterfactual outcome 

Mood can also depend on the unobtained outcome of unchosen op
tions. Several studies have shown how emotions can relate to compar
isons between the outcome of the chosen option and the unobtained 
outcome in the unchosen option (Bennett et al., 2022; Coricelli et al., 
2005; Mellers et al., 1997). For example, participants make a choice 
between option A and option B. Option A can win $50 or lose $50 and 
option B can win $200 or lose $200. After choosing option A, partici
pants feel better after a $50 win than a $50 loss. Seeing the unobtained 
outcome from the unchosen option B influences emotions. They feel 
better if the unobtained outcome is losing $200 than if the unobtained 
outcome is winning $200. Considering the unobtained outcome 

Fig. 1. Computational modeling of subjective 
well-being and fMRI analysis of striatal activity 
during risky decision making. (A) The compu
tational model that explained happiness had 
positive weights for certain reward, gamble 
expected value, and gamble reward prediction 
errors. (B) Neural responses in the ventral 
striatum preceding happiness ratings correlated 
with later self-reported happiness. These neural 
responses were explained by the same task 
variables used to explain happiness in the 
computational model (Rutledge et al., 2014).   
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introduces counterfactual thinking about what they would have ob
tained if they made a different choice, and this counterfactual outcome 
can influence emotions (Coricelli et al., 2007; Coricelli and Rustichini, 
2010). Furthermore, participants report disappointment when the ob
tained outcome is worse than they expected, and regret when the ob
tained outcome from the chosen option is worse than the unobtained 
outcome from the unchosen option. Greater regret was associated with 
elevated activity in orbitofrontal cortex, anterior cingulate cortex, and 
hippocampus (Coricelli et al., 2005). Regret for counterfactual outcomes 
has also been shown to be reduced in depressed patients (Chase et al., 
2010). Obsessive-compulsive disorder patients showed more extreme 
emotional responses to counterfactual outcome than healthy controls 
but no difference for outcomes from chosen options (Gillan et al., 2014). 
These findings suggest that subjective feelings for counterfactual out
comes may be relevant to a deeper understanding of psychiatric 
disorders. 

2.4. Interactions between mood and risky decision making 

Mood could also influence subsequent risky decisions. The “mood 
maintenance theory” proposed that people in happy moods are actually 
more reluctant to take risks because they want to avoid undermining 
their positive emotional state (Isen et al., 1988). This tendency to 
overweigh the pain of potential losses relative to gains is consistent with 
heightened loss aversion, attributed to a raised reference point (Mellers 
et al., 2021). However, some researchers have found the opposite rela
tionship. Elevated mood has been related to increased risk seeking 
(Forgas, 1995; Stanton et al., 2014). This effect is consistent with ana
lyses of real-world urban populations, which showed that positive 
incidental outcomes like local sporting events and weather patterns 
predict greater participation in lottery gambling (Otto et al., 2016). 
Analyses of day-to-day mood language extracted from Twitter and 
localized to the same location established that such surprising positive 
outcomes increase mood, and this increased mood is associated with 
increased gambling (Otto and Eichstaedt, 2018). Consistent with the 
theory that mood represents momentum of reward (see Section 1 for 
more information of the theory), a positive mood reflects increasing 
overall reward availability, and risky options may represent a novel 
reward source to be approached. Consistent with this possibility, people 
choose more novel stimuli in a positive mood (Dreisbach and Goschke, 
2004). 

Affective experience is also amenable to intentional cognitive regu
lation. Notably, researchers have found that cognitive regulation stra
tegies such as “perspective-taking” reduce physiological arousal to 
losses, and this has the effect of reducing loss aversion (Sokol-Hessner 
et al., 2009). These findings demonstrate that emotions influence sub
jective valuations of risk and behavior just as the positive and negative 
outcomes of those risks have an influence on emotions. Moreover, sub
jective feeling associated with potential risky options can be used to 
predict risky taking better than using the established Prospect Theory 
model (Charpentier et al., 2016). 

3. Computational models of subjective feelings: learning and 
uncertain environments 

3.1. Learning in uncertain environments 

In an uncertain environment, values of options are often not 
observable. Under the framework of reinforcement learning, people can 
learn these values by trial and error, and make adaptive decisions that 
maximize cumulative expected reward (Sutton and Barto, 2018). When 
the received outcome is better than predicted (i.e., a positive prediction 
error), the value of the chosen option should be increased, leading to an 
increase in the probability of repeating the same behavior. When the 
received outcome is lower than expected (i.e., a negative prediction 
error), the value of the chosen option should be decreased. 

3.2. Mood depends on prediction errors during learning 

Subjective feelings should play a role in adaptive behavior, but it 
remains unclear what this role is. Many studies show that physiological 
arousal changes during learning in response to prediction errors, sur
prise, and uncertainty. For example, pupil diameter increases as belief 
surprise or belief uncertainty increases (Nassar et al., 2012). A recent 
study measured skin conductance, pupil diameter, and subjective ratings 
of stress during learning (de Berker et al., 2016). Participants predicted 
whether pictures of rocks would lead to a snake, which resulted in a mild 
electrical shock when it was present. The probability of the snake for 
these stimuli changed occasionally during the task. This study explores 
three types of uncertainty: irreducible uncertainty, estimation uncer
tainty, and volatility uncertainty. Irreducible uncertainty emerges from 
the probabilistic association between action and outcome. It is highest 
when the probability of shock is 50% and gradually decreases as the 
probability of shock goes to 0% or 100%. Estimation uncertainty reflects 
imprecision in estimated shock probability and decreases with learning. 
Volatility uncertainty captures imprecision in the estimated volatility, 
which reflects instability in the shock probability. As irreducible un
certainty estimated from participant predictions increased, subjective 
stress, skin conductance, and pupil diameter also increased. The influ
ence of irreducible uncertainty on subjective stress was associated with 
the influence of irreducible uncertainty on both skin conductance and 
pupil diameter, supporting a link between subjective stress and physi
ological arousal in uncertain environments. Stress has also been shown 
to affect decision processes including valuation, learning, and risk taking 
in the lab and real life (Morgado et al., 2015; Porcelli and Delgado, 
2017). 

In addition to risky decision making (Section 2.2), the influence of 
prediction errors on momentary happiness has also been shown during 
learning in uncertain environments (Blain and Rutledge, 2020; Eldar 
and Niv, 2015). In these studies, participants made a choice from mul
tiple options with different reward probabilities. Trial-by-trial expected 
probabilities and prediction errors were estimated from a reinforcement 
learning model that best explained choice. During learning, participants 
were asked periodically about their momentary happiness. Their mood 
dynamics were driven both by expected probabilities and experienced 
prediction errors (Blain and Rutledge, 2020). These findings are 
consistent with a recent theory that mood represents the momentum of 
reward (see Section 1 for more information of the theory). 

Building on this work, Bennett and colleagues proposed that mood 
depends on the integration of advantages from multiple sources (Bennett 
et al., 2022). Advantage captures the difference between the value of 
taking a specific action in a specific state and the value of that state. 
Thus, a positive advantage indicates that this action can increase ex
pected reward. People can adjust behavior based on this advantage to 
maximize expected future reward. Recent research shows that this 
advantage can influence mood (Eq. 2) (Bennett et al., 2022). 

Moodt+1 = Moodt + ηmood(Advantaget − Moodt) (2) 

This model considers multiple sources for advantage. The first 
advantage is the reward prediction error of the chosen action. The sec
ond advantage is the difference between the learned value of the chosen 
action and the learned value of the unchosen actions. The third advan
tage is the difference between the learned value of the chosen action and 
the actual outcomes of the unchosen actions when participants receive 
this counterfactual information. In this model, mood can be simulta
neously influenced by these three advantages with different weights that 
capture the influence of multiple factors (e.g., expectation, prediction 
errors, counterfactual outcomes) on mood identified in past studies. 

Mood dynamics during learning may not reflect the momentum of all 
recent outcomes but instead specifically the prediction errors that are 
relevant to learning. In a recent study (Blain and Rutledge, 2020), par
ticipants chose between two options with different reward probabilities, 
and each option was randomly assigned a potential reward. Participants 
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must integrate their current beliefs about the probability of reward with 
the potential rewards on each trial to make decisions. In this task, there 
are two sources of prediction errors. One is the probability prediction 
error, which indicates the difference between whether participants 
receive a reward and the expected probability of the chosen option. This 
probability prediction error can be used to update beliefs about the 
reward probability of the chosen option. The reward prediction error is 
the difference between the magnitude of a received reward and the 
expected value of the chosen option. This reward prediction error is not 
informative in learning because the potential rewards are randomly 
assigned on each trial. Participants were asked to rate their happiness 
periodically during the task. The model that included probability pre
diction errors performed better than the model that instead included 
reward prediction errors in both stable and volatile environments 
(Fig. 2A). Reward magnitude influenced participant choices but did not 
influence momentary happiness. This was consistent for the stable 
environment (where the reward probabilities of the two options were 
stable for the entire task) and the volatile environment (where the 
reward probabilities of the two options switched periodically during the 
task). 

Modeling subjective feelings during learning could help to under
stand the aberrant beliefs and decisions present in psychiatric disorders. 
For example, using computational models to evaluate the baseline mood 
parameters in stable and volatile environments separately (Blain and 
Rutledge, 2020) showed differences related to depression. Depressive 
symptoms were associated with lower baseline mood parameters in 
volatile but not stable environments (Fig. 2B). In volatile environments, 
anxiety symptoms are associated with irregular learning (Browning 

et al., 2015), and subjective feelings measured in different types of un
certain environments could help in understanding the experience of 
people with psychiatric disorders. 

3.3. Interactions between mood and learning 

Mood is not just a byproduct during learning but can also influence 
learning. Manipulating mood with task-irrelevant stimuli can influence 
later preferences (Eldar and Niv, 2015; Michely et al., 2020). In a 
learning task (Eldar and Niv, 2015), participants learned to choose 
among three slot machines with reward probabilities of 20%, 40%, or 
60%. In the middle of the task, people played a task-irrelevant wheel of 
fortune. Participants were happier after winning than losing the wheel 
of fortune. After this wheel of fortune, participants learned to choose 
among three new slot machines with reward probabilities of 20%, 40%, 
and 60%. In the test phase, participants chose between pairs of slot 
machines they had learned about but in the absence of any additional 
feedback. For people with high trait mood instability, indicating 
vulnerability for bipolar disorder, preferences were influenced by the 
wheel of fortune outcome. For the slot machines with the same reward 
probabilities, they preferred the one learned after winning the wheel of 
fortune to the matched ones learned before winning the wheel of fortune 
(Eldar and Niv, 2015). Conversely, they preferred the slot machines 
learned before losing the wheel of fortune to matched ones learned after 
losing the wheel of fortune. Even though the wheel of fortune was not 
relevant to learning, mood changed as a result might have influenced 
perceived outcomes and biased subsequent preferences. Additionally, 
this mood impact also modulated the neural encoding of reward in 

Fig. 2. Momentary happiness in a learning task. (A) The 
model including probability prediction errors (PPE) per
formed better than the model including reward prediction 
errors (RPE) in both stable and volatile environments. Each 
data point indicates a participant. (B) The happiness con
stant or baseline mood parameter was correlated with 
depressive symptoms assessed by the Patient Health 
Questionnaire (PHQ) in volatile but not stable environ
ments. This parameter was estimated from the happiness 
model that simultaneously quantifies the influence of ex
pected probabilities and probability prediction errors on 
happiness (Blain and Rutledge, 2020). * p < 0.05.   
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striatum during learning. People with high trait mood instability showed 
stronger neural responses to reward after compared to before winning 
the wheel of fortune. Conversely, they showed weaker neural responses 
to reward after compared to before losing the wheel of fortune. 

Computational models help in understanding the association be
tween mood dynamics and learning dynamics. A mood bias parameter in 
this model influenced the perception of a received reward (Eldar and 
Niv, 2015). As learning is driven by prediction errors between expec
tations and rewards, this biased perception on received reward can in
fluence learning. The mood bias parameter was associated with trait 
mood instability. Moreover, this theoretical framework suggested that a 
high mood bias parameter is a risk factor of bipolar disorder (Mason 
et al., 2017). For example, a positive prediction error leads to higher 
mood. The higher mood biases the perception of received outcome to 
generate larger positive prediction errors, and then this large positive 
prediction error updates expectation upward more than they would 
have otherwise. As expectation becomes excessively high, individuals 
could enter a manic phase where they expect everything to go well and 
experience any small reward as being large. However, this state would 
increase the probability of large negative prediction errors and even
tually could contribute to a depressive phase. A number of large negative 
prediction errors together lead to low mood, and this low mood biases 
the perception of received outcomes downwards and thereby expecta
tions. Stronger mood bias parameters could lead to stronger positive 
feedback dynamics that encourage manic and depressive phases. 

4. Computational models of subjective feelings: social 
environments 

4.1. Decision making in social contexts 

Decision making in social contexts is complex because people care 
not only about their own choices and outcomes but also the choices and 
outcomes of others. In real life, we make many decisions involving 
interaction with others, from negotiating salary for a new job, to 
responding to a tweet, to asking someone out on a date. Such decisions 
recruit a broad range of cognitive processes, including mental state 
inference and the evaluation of social norms (Lee, 2008; Lee and Harris, 
2013; Rilling and Sanfey, 2011; Xiang et al., 2013). Computational 
modeling is increasingly being used to understand how these processes 
contribute to social decision making (Cheong et al., 2017; Cushman and 
Gershman, 2019; FeldmanHall and Nassar, 2021). Emotional expres
sions and how they change over time could reflect recent events like 
self-reports of mood. Individuals can use emotional expressions to infer 
the likely causes (Ong et al., 2019; Wu et al., 2021). Computational 
models can test to what extent multiple past events influence current 
expressions, allowing tests of whether others can infer the causes of 
emotional expressions in a way that matches the factors that are most 
predictive of expressions. 

A prominent finding is that social decisions often deviate from 
normative theories of reward maximization (Bernoulli, 1954; Kahneman 
and Tversky, 1979; Von Neumann and Morgenstern, 1944). This has 
been shown empirically using the ultimatum game, a two-player eco
nomic choice paradigm in which a proposer decides how to split money 
with another player and a responder decides whether to accept or reject 
the offer (Güth et al., 1982; Harsanyi, 1961; van ’t Wout et al., 2006). 
Responders reject around half of all offers that fall below 20% of the 
total, even though the rational (i.e., reward-maximizing) choice strategy 
in non-repeated interactions is to accept any non-zero offer (Nowak 
et al., 2000). Rejected offers result in no money for either player, and are 
believed to reflect negative emotions (i.e., anger) that relate to a desire 
to punish the proposer (Nelissen and Zeelenberg, 2009; Pillutla and 
Murnighan, 1996). Neuroimaging using fMRI suggests a link between 
heightened activity in anterior insula, dorsolateral prefrontal cortex, 
and anterior cingulate cortex and increased rejection of unfair offers, 
and this signal, as well as rejection rates, are increased during 

interaction with a human compared to a computer player (Sanfey et al., 
2003). 

Computational modeling has led to progress understanding disorders 
with a social dimension, such as autism, social anxiety, and borderline 
personality disorder, which have been linked to differences in learning 
and decision making in interpersonal settings (Fineberg et al., 2018; 
Forgeot d′Arc et al., 2020; Henco et al., 2020; Hopkins et al., 2021; 
King-Casas et al., 2008; Siegel et al., 2020). An ongoing challenge is to 
understand the mechanisms by which affective experience during social 
decision making is related to psychiatric disorders, something that 
computational models of subjective feelings have begun to shed light on. 

4.2. Mood is influenced by social comparison 

Mood dynamics are influenced by comparison between outcomes for 
the self and for other people, consistent with ongoing affective experi
ence being influenced by other reference points than just expectations. 
This is also consistent with measures of subjective well-being at a pop
ulation level, where how satisfied people are with their lives depends 
partially on how they compare to others in their social environment 
(Boyce et al., 2010; Luttmer, 2005). In an ultimatum game, people 
exhibited stronger arousal-related skin conductance responses when 
rejecting versus accepting an offer proposed by a human partner (van ’t 
Wout et al., 2006). In contrast, there was no difference in skin conduc
tance between rejecting and accepting an offer proposed by a computer. 
Momentary happiness in individuals also reflects social comparison 
(Rutledge et al., 2016). Participants rated their momentary happiness as 
they played a risky decision-making task in which they saw the out
comes not only of their own choices, but also those of a social partner. 
Happiness was predicted best by a model that accounted for subjective 
feelings elicited by social comparison, revealing that both advantageous 
inequality (i.e., conditions that could elicit guilt) and disadvantageous 
inequality (i.e., conditions that could elicit envy) reduced happiness on 
average (Fig. 3A). Model parameters also predicted how generous par
ticipants were in a separate dictator game: greater guilt was associated 
with more generous decisions, and greater envy with less generous de
cisions (Fig. 3B). This pattern of results highlights how computational 
models can be used to distinguish many simultaneous influences on 
happiness, including some that may be socially undesirable to admit (e. 
g., envy). 

Previous work has shown that generosity itself is associated with 
greater happiness (Dunn et al., 2008). In one study, participants were 
instructed that they would receive a monetary endowment to spend over 
a period of four weeks, allocating one group to pledge to spend the 
money on other people (experiment group) and a separate group to 
pledge to spend the money on themselves (control group) (Park et al., 
2017). Participants made a series of choices to accept or reject proposals 
from a social partner while undergoing an fMRI scan. Each proposal 
consisted of a monetary benefit for their social partner and a monetary 
cost to themselves. The researchers found that participants who had 
pledged to spend money on others made more generous decisions, and 
reported a greater increase in happiness over the course of the experi
ment (Park et al., 2017). Generous decision making corresponded to 
increased BOLD activity in the temporoparietal junction, and increased 
connectivity between that area and ventral striatum. Remarkably, these 
effects were seen after participants had made a commitment to being 
generous, but before they had spent any money. 

4.3. Mood is modulated by social norms 

Mood dynamics can also be influenced by social norms. One 
approach has been to model social emotions as affective and motiva
tional state changes in response to violations of social norms. This builds 
on functional theories that compare emotions to homeostatic mecha
nisms (Chang and Smith, 2015; Damasio, 1999; Seth, 2013), positioning 
social norms such as “fairness” as learned set points (Montague and 
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Lohrenz, 2007). In a variation of the ultimatum game, participants acted 
as responders to offers from a computer (Xiang et al., 2013). Offers from 
the computer were drawn from a Gaussian distribution, the mean and 
variance of which differed between the first and second half of the 
experiment. Throughout the task, participants rated their subjective 
feelings about the current offer using emoticons (Lang, 1980). Using 
computational models, the researchers found that momentary happiness 
depended not only on the fairness of the current offer, but on how much 
that offer deviated from the fairness norm established in the first half of 
the experiment (Xiang et al., 2013). The extent to which each offer 
deviated from this model-based norm covaried with BOLD activity in 
medial prefrontal cortex, nucleus accumbens, and posterior cingulate 
cortex. 

Prediction errors derived from social feedback can also influence 
momentary feelings of self-worth (Will et al., 2017, 2020). Participants 
received a series of “likes” and “dislikes” that they were told were from 
people who had viewed a social media profile they had previously 
submitted to researchers. On each trial, participants were presented 
with the name of the rater, and a color cue indicating which of four 
groups the rater belonged to based on how likely they were to like 
profiles in general. The researchers found that self-esteem was not only 
sensitive to social approval or disapproval, but to social approval pre
diction errors: receiving a like resulted in a bigger increase in self-esteem 
if it came from a rater who liked few profiles in general, compared to a 
rater who liked most profiles. Social approval prediction errors modu
lated BOLD activity in ventral striatum, but changes in self-esteem 
modulated ventromedial prefrontal cortex activity. 

These findings are consistent with the notion that self-esteem is 
shaped over time by social evaluation by others (Gruenenfelder-Steiger 
et al., 2016), suggesting that self-esteem may serve as a type of dynamic 
learning signal used to update beliefs about changes in one’s own social 
standing (Low et al., 2022). Low self-esteem is an important risk factor 
across a range of psychiatric disorders (Orth et al., 2012), which raises 
the possibility that such disorders are driven in part by aberrant 
cognitive or affective processes during social learning. Indeed, partici
pants with low trait self-esteem exhibited impaired social learning and 
tended to persist in their expectations of disapproval (Will et al., 2020). 
At the same time, momentary feelings of self-worth in this group were 
more volatile and susceptible to change based on social prediction er
rors, identifying a dissociation between the impact of social prediction 
errors on learning and feelings that relate to trait self-esteem (Will et al., 
2020). Participants reported feelings of self-worth throughout the 
experiment, and computational modeling was used to explain fluctua
tions in self-worth in relation to recent task events. The researchers then 
used canonical correlation analysis to derive a computational phenotype 
based on both psychiatric symptoms and parameters from the compu
tational model. Participants with high scores on a single dimension of 

“interpersonal vulnerability” not only had lower trait self-esteem, but 
also exhibited attenuated BOLD signal in ventromedial prefrontal cor
tex, which corresponded to lower expectations of positive social 
approval during the task (Fig. 4) (Will et al., 2020). 

4.4. Interactions between mood and social decision making 

Social behavior varies widely across individuals, but subjective 
feelings do not always track decision making. In a social context, sub
jective feelings of self-worth can be highly reactive to social feedback in 
individuals with low self-esteem who do not update their expectations 
about future social feedback, despite both expectations and subjective 
feelings of self-worth being subject to the same social prediction errors 
(Will et al., 2020). Another study investigated the role of reward pre
diction errors and also emotion prediction errors in a non-learning social 
context (Heffner et al., 2021). In an ultimatum game, participants rated 
their momentary affect along valence and arousal dimensions twice on 
each trial: once before the offer was made, capturing emotion expecta
tions, and once after the offer was made, capturing emotion experience. 
Reward prediction errors between the observed offer and expected offer 
were predictive of rejection. Differences between experienced and ex
pected emotion were computed as valence prediction errors and arousal 
prediction errors, whose role in decisions was distinct from reward 
prediction errors. Participants were more likely to reject offers (and thus 
punish their partner) after experiencing less valence or more arousal 
than expected. Critically, depressed participants showed diminished use 
of emotion prediction errors in guiding decisions, but intact use of 
reward prediction errors (Fig. 5). Moreover, depression was associated 
with a reduced overall range of reported emotional experience (Heffner 
et al., 2021). Together, these results suggest that emotional responses to 
social feedback can be blunted in depression even if responses to some 
types of reward feedback are not (Rutledge et al., 2017). 

5. How computational models of subjective feelings could help 
us understand mood disorders 

Despite the fact that mood disorders are diagnosed based on self- 
reported subjective symptoms, there has been little research on using 
computational models to understand subjective feelings in controlled 
task conditions. Experience sampling provides information about 
emotional variability but does so in an uncontrolled environment with 
minimal information as to ongoing experience. Measuring affective 
states with questionnaires depends on how well individuals remember 
past emotions. Measuring momentary mood changes during different 
tasks provides a way to measure affective experience in controlled task 
conditions that is complementary to standard approaches to measuring 
emotion. 

Fig. 3. Computational modeling of affective responses to 
inequality during social decision making. (A) Consistent 
with previous work modeling subjective feelings in a risky 
decision task, happiness depended on the value of recent 
chosen rewards (CR), the expected value of recent gambles 
(Gamble EV), and reward prediction errors resulting from 
gambles (Gamble RPE). Critically, in addition to these 
reward values, more negative parameter estimates of guilt 
and envy predicted lower happiness. (B) Guilt and envy 
parameter estimates predicted generosity in a separate 
dictator game, as measured by the percentage of a mone
tary sum that participants allocated to their social partner. 
Participants whose happiness was reduced more by guilt 
than envy gave more on average compared to participants 
whose happiness was reduced more by envy than guilt 
(Rutledge et al., 2016). * p < 0.05.   
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Psychiatric disorders such as major depressive disorder or general
ized anxiety disorder have shown a wide range of neurocomputational 
deficits in behavior (Hitchcock et al., 2022). However, there is consid
erable heterogeneity and the underlying mechanisms are not well un
derstood. For example, there was mixed evidence about model 
parameters in reinforcement learning tasks in depression (Chen et al., 
2015). Compared with control participants, a meta-analysis showed that 
depressed patients showed higher learning rates for punishments and 
slightly lower learning rates for reward (Pike and Robinson, 2022). 
However, there was considerable variability across studies. Investi
gating subjective feelings during tasks may help to resolve the incon
sistency of these findings. For example, different effects of learning rates 
for punishment and reward may only be shown on participants who 
change their mood in response to punishment and reward, but not on the 
participants who showed no change in affective state. 

The link between cognitive and affective mechanisms can be influ
enced by psychiatric disorders. Psychiatric disorders may lead to 
different impacts on behavior and subjective feelings. For example, 
depressive symptoms did not lead to impairments in performance in 
risk-taking tasks (Rutledge et al., 2017) (see Section 2.2 for more in
formation) or reinforcement learning tasks (Blain and Rutledge, 2020) 
(see Section 3.2 for more information). However, higher depressive 
symptoms were associated with lower baseline mood parameters, sug
gesting that depression influences the affective experience of individuals 

completing these tasks. In a learning task, mood instability assessed with 
a standard clinical questionnaire was associated with a mood bias 
parameter quantifying the impact of mood on learning (Eldar and Niv, 
2015) (see Section 3.3 for more information of the study). These findings 
suggest that measuring affective processes can reveal distinct cognitive 
and affective mechanisms in psychiatric disorders. Furthermore, 
modeling subjective feelings has the potential to disentangle the stable 
and dynamic components of affective processes. For example, bipolar 
disorder and borderline personality disorder are both characterized by 
high mood variability. Modeling daily mood ratings collected for a long 
time period revealed that mood changes in bipolar disorder persist (i.e., 
mood volatility) longer than mood changes in borderline personality 
disorder (i.e., mood noise) (Pulcu et al., 2022). Baseline mood param
eters could capture relatively more stable components, although drift in 
mood can also be modeled, providing useful additional information. For 
example, a higher decay on mood over time during rest is associated 
with lower depression risk (Jangraw et al., 2021). 

Having these affective measures aid in the identification of subtypes 
for different disorders. Past studies have used self-report scores to cluster 
depressed patients along anxiety and anhedonia dimensions, and 
revealed putative neural subtypes based on brain functional network 
connectivity (Drysdale et al., 2017). We can apply dimensional ap
proaches to both cognitive and affective measures. These components 
can be linked to specific neural subtypes or aid in the identification of 

Fig. 4. Self-esteem was associated with an “interpersonal 
vulnerability” dimension reflecting both model parameters 
and symptoms. Will et al. (2020) derived a computational 
phenotype with a single dimension of “interpersonal 
vulnerability”. (A) BOLD activity in ventromedial prefron
tal cortex correlated with the extent to which participants 
expected approval on the current trial. (B) Higher scores on 
this dimension predicted attenuated expected approval 
signal in ventromedial prefrontal cortex (Will et al., 2020).   

Fig. 5. Emotion prediction errors in the ultimatum game. Emotion prediction errors were computed as the difference between expected and experienced emotion. 
People were more likely to reject unfair offers when experiencing less valence or more arousal than expected. This influence of emotion prediction errors was 
significantly reduced in depression. (Heffner et al., 2021). * p < 0.05, ** p < 0.01. 
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new subtypes that reflect brain, behavior, and emotion. In addition, 
subjective feelings can be investigated in relation to brain network 
measurements. Greater daily variability in physical location was related 
to increased positive affect and this link was stronger for people who 
show greater functional connectivity between ventral striatum and 
hippocampus (Heller et al., 2020). 

More dimensional data are required to understand the heterogeneity 
of mood disorders. Bigger data sets are useful for increasing statistical 
power, but only if they measure the right things. Especially because 
subjective feelings should relate to subjective symptoms, adding ratings 
of subjective feelings to existing tasks is an intuitive and efficient way to 
collect additional data that should be highly relevant to psychiatric 
disorders. Given such multi-dimensional data from individuals, we 
could make better symptom predictions (Rutledge et al., 2019). 
Furthermore, using parameters estimated from computational models 
for behavior and subjective feeling can increase power over 
machine-learning approaches that do not employ computational models 
to reduce the dimensionality of the data (Rutledge et al., 2019). 
Computational models can help to better understand and categorize 
individuals and be useful in designing effective interventions for specific 
individuals (Nair et al., 2020). For example, the adaptation of learning 
rate to the volatility of rewards was intact for greater anxiety symptoms 
but the adaptation of learning rate to punishments was impaired for 
greater anxiety symptoms (Pulcu and Browning, 2017). Compulsivity is 
associated with impaired model-based learning (Gillan et al., 2016). In a 
volatile environment, compulsivity was associated with impaired 
learning (Sharp et al., 2021; Vaghi et al., 2017) but confidence ratings in 
response to volatility were unchanged (Vaghi et al., 2017). In addition, 
adaptation of learning rate to reward or punishment volatility was not 
associated with depressive symptoms (Blain and Rutledge, 2020; Pulcu 
and Browning, 2017), but greater depressive symptoms were associated 
with lower baseline mood parameters reflecting a different affective 
experience (Blain and Rutledge, 2020). Understanding this computa
tional heterogeneity can inspire different interventions for different in
dividuals (Pulcu and Browning, 2017). 

6. The value of smartphones for computational models of 
subjective feelings 

Smartphone-based research methods have the potential to dramati
cally advance our scientific understanding of subjective feelings and 
mental health (Gillan and Rutledge, 2021). Research in mental health 
today has focused on making descriptive claims about mental illness and 
its contributing factors in the population. For the field to provide in
sights that are clinically useful, a major paradigm shift is needed that can 
move the field beyond description and toward prediction (Browning 
et al., 2020). The highly individualized nature of subjective experiences 
makes it a good candidate for being relevant to this problem of pre
dicting treatment responses and symptom severity. 

Subjective well-being is complex, and it is influenced by a large array 
of competing and interacting factors such as sleep, stress, early life 
trauma, social factors, and diet. It is challenging to make advances in 
understanding mental illnesses because large comprehensive studies 
that can capture different dimensions of mental illness and lifestyle are 
difficult to conduct in traditional lab settings. Due to the wide avail
ability of smartphones, which offer capabilities like sleep monitoring, 
geolocation tracking, accelerometer data, and social media activity logs, 
smartphones are uniquely positioned to deliver substantially larger and 
richer multivariate datasets than feasible through traditional single-site 
studies. As people experience a wide range of emotions in daily life, 
smartphones can also provide a convenient tool to measure the richness 
of real-life subjective feelings (Trampe et al., 2015). Smartphone-based 
experiential sampling can be used in innovative combinations with 
neuroimaging methods to reveal the links between lifestyle, brain con
nectivity, and mental health outcomes. Greater diversity of daily-life 
activities predicts positive affect in humans and increased 

hippocampal-striatal functional activity (Heller et al., 2020). Daily-life 
activities can be used to estimate an individual-specific mobility “foot
print” and the more consistent and distinctive the footprint, the lower 
the mood instability. This footprint was also predictive of sleep irregu
larity and functional brain network connectivity (Xia et al., 2022). 

Self-reported symptom inventory scores capture a static snapshot in 
time that can be related to task data. However, when administered only 
once, these scores fail to encompass the reality that mood disorders 
follow dynamic trajectories over time, and that the instruments them
selves might not be accurately capturing the latent traits that are most 
important for predicting future outcomes (Sharp et al., 2020). Formal 
computational models can be used to relate internal traits to symptom 
change over time. In addition to the dynamics of mood in tasks, the 
dynamics of traits or symptoms over time can be important features of 
psychiatric disorders. Furthermore, understanding the association be
tween mood and symptom dynamics can help to predict future symp
toms changes. Smartphone-based methodologies are especially useful 
because they lower practical barriers to acquire densely sampled data
sets, and have advantages over in-lab data collection in allowing 
ecological experience sampling during daily life on the same platform. 
Several studies have shown how smartphones can conveniently collect 
subjective feelings over a long period (e.g., hours or days). In one study, 
students reported their positive and negative affect periodically over 
several hours each day on several days, and showed that real-life pre
diction errors resulting from exam results influenced mood for multiple 
days (Villano et al., 2020). Another study used smartphone data 
collection to show that electroencephalographic measurements of neu
ral responses to reward prediction errors during learning tasks predicted 
mood changes up to 24 hours later (Eldar et al., 2018). These studies 
illustrate the value of employing longitudinal techniques on smart
phones to understand real-world mood and behavior. 

7. Future directions 

Adding subjective ratings to existing tasks provides additional data 
that can be used to understand psychiatric disorders. Different subjec
tive feelings can be measured depending on the disorders or processes 
under study. Different questions can probe specific types of emotion 
(Heffner et al., 2021; Heffner and FeldmanHall, 2022), which have 
different relationships with decision making (Heffner and FeldmanHall, 
2022). For example, researchers interested in the conditions that make 
people angry might consider repeatedly asking questions about anger. 
Researchers interested in social behavior could ask questions about 
self-esteem. Different tasks should modulate different kinds of subjective 
feelings. For example, subjective stress during learning was associated 
with uncertainty (de Berker et al., 2016) (see Section 3.2 for more in
formation). Subjective feelings of self-worth were related to trait 
self-esteem (Will et al., 2017, 2020) (see Section 4.3 for more informa
tion). Valence prediction errors were more related to rejecting offers 
from other people compared with arousal prediction errors (Heffner 
et al., 2021) (see Section 4.4 for more information). Future studies can 
also investigate decision making in more complicated situations where 
people may form a cognitive map of the environment (Behrens et al., 
2018). For example, how does momentary happiness changes in 
response to map complexity and deviations from the learned cognitive 
map? 

To model subjective feelings, a good setting for measuring subjective 
feelings is required. While emotion researchers have often focused on 
affective responses to specific events, less is understood about affective 
states like moods which often change more slowly (see Section 1 for the 
distinction between emotion and mood). For any task in which affective 
state might vary in relation to multiple previous events, we recommend 
the following guidelines for developing computational models of affec
tive states: 
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1) Questions that probe affective state can be included in a wide variety 
of tasks, but the task should be such that affective state varies over 
time for most participants. For example, probabilistic reward is a 
reliable way to influence happiness. Even if the major focus of the 
study is not reward, probabilistic reward can be a way to keep par
ticipants engaged and to provide a reference point to compare affect 
in other domains. For example, the happiness related to a task that 
only some participants found intrinsically rewarding can be related 
to the happiness derived from a probabilistic reward task that most 
people found extrinsically rewarding (Chew et al., 2021).  

2) Affective state questions should be related to participant affective 
state and not mention task events. For happiness, participants can 
rate between “very unhappy” and “very happy” for the question 
“How happy are you right now?” (Blain and Rutledge, 2020; Rut
ledge et al., 2014). For self-esteem, participants can rate between 
“very bad” and “very good” for the question “How good do you feel 
about yourself at this moment?” (Will et al., 2017, 2020). A 
continuous scale without numbers or markings reduces the proba
bility that participants remember previous ratings.  

3) Affective state questions should not be asked too frequently. For most 
paradigms, no more than twice per minute is a good rule of thumb. 
For a trial-based paradigm, there should always be at least two trials 
between each rating. Computational modeling can be used to sepa
rate out the influences of multiple previous events. Questions asked 
more frequently risk annoying participants.  

4) Repeatedly answering affective state questions is an additional task 
that participants perform. When asked only a single question 
repeatedly, participants typically respond quickly and without sub
stantial reflection. Asking multiple types of questions can introduce 
additional task switching costs that reduce participant engagement 
and data quality. Thus we recommend sticking to one question per 
experiment. Rating along valence and arousal dimensions simulta
neously does offer one way to get multiple measures without over
complicating the task (Heffner et al., 2021).  

5) Task-relevant information should not be presented on the screen 
when participants answer affective state questions. Any task cues or 
information about overall performance (e.g., total score), could lead 
to an additional impact on affective state different from the subject of 
study. 

These guidelines may be useful for investigating the roles of emotion 
and mood in decision making. A recent theoretic framework mapped 
different types of emotion to different computations during decision 
making (Emanuel and Eldar, 2023). Under this proposed framework, 
decision making is decomposed into multiple processes: outcome eval
uation, value learning, policy learning, and planning. Pleasure and pain 
relate to outcome evaluation; happiness and sadness relate to value 
learning; frustration and content are related to outcomes due to our 
actions; anger and gratitude relate to outcomes due to others’ actions; 
desire and hope relate to plans to realize uncertain outcomes; fear and 
anxiety relate to avoiding uncertain outcomes. Future studies following 
our guidelines can test specific predictions of this framework by 
measuring feelings associated with specific emotions in environments 
where behavior can be explained by the emotion-relevant computations. 

One important question is whether the subjective feelings we mea
sure reflect the latent state we wish to study. First, we can evaluate the 
model fit on momentary mood. If model performance and reliability are 
high when considering data collected at different times, this suggests 
that task events can be related to self-reports in a consistent way. Sec
ond, we can evaluate how ratings respond to specific task events. For 
example, people should be happier after wins compared to losses. Third, 
we can evaluate baseline mood parameters across tasks. If correlations 
are high, that suggests this measure is coherent across tasks. Fourth, we 
can directly manipulate mood with standard manipulations. For 
example, people felt happier for multiple ratings after winning a wheel 
of fortune (Eldar and Niv, 2015). Fifth, we can evaluate whether 

self-report ratings are associated with subsequent behavior. For 
example, low mood in the current situation (e.g., mood in the current 
job) can be associated with change from the current situation (e.g., 
switching jobs) (Kaiser and Oswald, 2022). Participants in a high mood 
act as if rewards are perceived as better than they are, choosing 
rewarded options more frequently (Eldar and Niv, 2015). Last, we can 
collect questionnaires specifically about emotion awareness. High 
emotion awareness is associated with insula activity (Sharp et al., 2018), 
and insula activity is associated with self-report happiness (Rutledge 
et al., 2014). Here, there is overlap with the issues concerning other 
subjective reports including confidence (Vaghi et al., 2017) and meta
cognitive awareness (Fleming and Lau, 2014). A detailed understanding 
of affective states will benefit from use of the tools developed to study 
other kinds of subjective self-reports. 

Researchers should characterize affective processing across a wide 
variety of tasks in relation to psychiatric disorders. Research Domain 
Criteria (RDoC) provides a research framework to study psychiatric 
disorders (Cuthbert and Insel, 2013; Insel et al., 2010). For example, 
Positive Valence Systems delineate several constructs relevant for de
cision making: reward responsiveness (including reward anticipation, 
initial response to reward, reward satiation), reward learning (including 
probabilistic and reinforcement learning, reward prediction error, 
habit), and reward valuation (including reward, probability, delay, 
effort). These constructs are shared between multiple decision-making 
tasks. Past studies based on this framework have focused on behaviors 
and not subjective feelings. In the same way that behavioral processes 
should be shared across tasks, affective processes (e.g., affective re
sponses to reward prediction error) should be shared between tasks (e. 
g., between risk-taking and reinforcement learning tasks). Studies of 
subjective feelings also provide insight into neurobiological processes 
that contribute to subjective symptoms but are difficult to evaluate in 
animal models where self-reports of affective states are unavailable. A 
focus in pharmaceutical research on animal models means that drug 
development has focused primarily on behavioral differences and 
largely ignored subjective aspects of psychiatric disorders, despite sub
jective aspects being a major source of patient distress (LeDoux and Pine, 
2016). The neural circuits that generate aberrant behaviors should 
overlap with but not be identical to those that generate aberrant feel
ings. Any difference in symptom-behavior and symptom-feeling associ
ations are an indication of how much the processes are dissociable. A 
goal of psychiatry is to treat subjective symptoms, and thus adding 
measurements of subjective feelings to established tasks can enrich the 
RDoC framework and improve our understanding of psychiatric disor
ders and design of effective treatments. 

With the collection of larger datasets, we can enrich transdiagnostic 
dimensional approaches to understand symptoms instead of focusing on 
specific disorders. For example, past studies used factor analysis on 
multiple self-report questionnaires to extract three factors (e.g., 
compulsive behavior and intrusive thought, anxious depression, and 
social withdrawal), and then evaluated the association between these 
factors and task performance (Gillan et al., 2016; Gillan and Seow, 
2020). Given anxiety as an example, past studies discussed cognitive and 
neural difference between two anxiety subtypes: anxious apprehension 
and anxious arousal (Sharp et al., 2015). Anxious apprehension is 
related to worry while anxious arousal is related to fear and panic. This 
distinction can be computationally linked to different decision-making 
processes. High chronic worry was associated with difficulty in disen
gaging from the goal of punishment avoidance when the current goal 
has changed to seek reward (Sharp et al., 2022). In an aversive envi
ronment, high physiological symptoms of anxiety were associated with 
enhanced learning from safety (Wise and Dolan, 2020). These ap
proaches can help to understand individual processes and symptoms. As 
we collect affective measures in addition to cognitive measures, we can 
expand transdiagnostic dimensions and better stratify patients, aiding in 
the design of effective treatment to target different individuals. Addi
tionally, with increasing data from cognitive and affective perspectives, 
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we will need tools for integrating diverse information to account for 
current symptoms and to predict future symptoms. Theory-driven ap
proaches allow task data to be compactly summarized with a small 
number of parameters. Data-driven machine learning approaches are 
complimentary in allowing parameters estimated from multiple tasks to 
be combined with other data sources to make predictions (Rutledge 
et al., 2019). In large data sets, machine learning approaches can also 
account for behavioral and affective variability in complicated tasks in 
ways that lie outside of existing computational models (Dezfouli et al., 
2019). Using these approaches on data sets including both task and 
non-task data will improve predictions and aid in the design of effective 
treatments for psychiatric disorders. 

Subjective feelings are not just a byproduct of behavior but may be 
our best way of understanding emotional process that play an important 
role in behavior. Task-irrelevant information to manipulate mood is one 
way to test for an influence of mood on behavior. After a positive mood 
manipulation, people more quickly update the value of option upwards 
(Eldar and Niv, 2015; Vinckier et al., 2018). Subjective feelings can also 
better predict participants’ risky choices compared with the Prospect 
Theory model (Charpentier et al., 2016). Approaches that change task 
conditions as a result of past affective reports (e.g., to increase or 
decrease happiness) are one way to understand how mood and behavior 
interact (Keren et al., 2021). Another view of the relationship between 
mood and behavior is the idea of mood homeostasis which suggests that 
people stabilize their mood by engaging in mood-modifying activities 
such that they are more likely to engage in activities that should increase 
mood while in a low mood state and more likely to engage in activities 
that lower mood (i.e., washing dishes) while in a high mood state 
(Quoidbach et al., 2019; Taquet et al., 2016). This mood regulation 
appeared to be impaired in people with depression (Taquet et al., 2021). 
These findings together illustrate the importance of using measurements 
of subjective feelings to understand the relationship between emotion 
and behavior. Furthermore, the association between emotion and 
behavior could change in psychiatric disorders. This has been found to 
be the case for other types of subjective reports. In a perceptual task, 
through transdiagnostic dimensional approaches, high anxious depres
sion was related to low confidence level and high metacognitive effi
ciency whereas high compulsive behavior and intrusive thought was 
related to high confidence level and low metacognitive efficiency 
(Rouault et al., 2018). However, none of these transdiagnostic symp
toms was correlated with task accuracy. Additionally, patients with high 
compulsivity showed weaker associations between changes in behavior 
in a volatile environment and changes in confidence (Seow and Gillan, 
2020; Vaghi et al., 2017). 

Computational models of subjective feelings in tasks can also be 
applied to real life. Using smartphone-based measurement of emotions 
over multiple days, emotional responses of students receiving exam re
sults were found to depend strongly on expectations and resulting pre
diction errors (Villano et al., 2020) (see Section 6 for more information 
about smartphone-based research methods). This measure of real-life 
emotional response could be considered in relation to psychiatric dis
orders. Prediction errors can also derive from successfully performing a 
learned skill (e.g., cooking, playing piano, riding a bicycle) in a manner 
that might be thought of as more intrinsically than extrinsically 
rewarding (Chew et al., 2021). Greater modulation of BOLD activity in 
ventromedial prefrontal cortex by a motor performance aspect of a task 
was associated with a greater influence of motor performance on mood. 
Individuals with a more consistent and distinct mobility “footprint” had 
lower mood instability (Xia et al., 2022). Furthermore, subjective feel
ings can also help to predict city-level behaviors. Real-world unexpected 
positive outcomes (e.g., sport results or weather) can increase mood 
states and risk-taking behaviors in a city (Otto et al., 2016; Otto and 
Eichstaedt, 2018). Better study of these relationships could help in un
derstanding societal mental health and guiding policymakers. Many 
studies focus on the association between tasks and individuals, but 
within-subject variance is just as important. Little is known about the 

temporal dynamics of symptoms within subjects (Sharp et al., 2020). 
With smartphones, it is easier to measure dense longitudinal data from 
individuals. If we repeatedly collect data in a wide variety of tasks, we 
can better understand how cognitive and affective processes relate to 
changes in symptoms. In addition to mood in the tasks, it is also 
important to understand mood dynamics outside of tasks. The pattern of 
real-life mood dynamics may be a marker of psychiatric disorders. For 
example, bipolar disorder may lead to mood fluctuations that do not 
affect subjective feelings during tasks (Pulcu et al., 2022). We can collect 
mood at different times (e.g., morning, evening), days (e.g., weekday, 
weekend), seasons (e.g., summer, winter), and in relation to major so
cietal or personal events. Computational models of subjective feelings 
have the possibility to bridge the gap between behavior and symptoms, 
offering a new way to understand the heterogeneity of psychiatric dis
orders and to better predict treatment outcomes. 
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